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Abstract
A reduction method of ODEs not possessing Lie point symmetries makes use
of the so-called λ-symmetries (Muriel and Romero 2001 IMA J. Appl. Math.
66 111). The notion of covering for an ODE Y is used here to recover λ-
symmetries of Y as nonlocal symmetries. In this framework, by embedding Y
into a suitable system Y ′ determined by the function λ, any λ-symmetry of Y
can be recovered by a local symmetry of Y ′. As a consequence, the reduction
method of Muriel and Romero follows from the standard method of reduction
by differential invariants applied to Y ′.

PACS number: 02.30.Hq
Mathematics Subject Classification: 34C14

1. Introduction

Local symmetries play an important role in the study of differential equations. In particular,
they are extensively used in the case of ordinary differential equations (ODEs) since they
provide a unified approach to the reduction problem. In fact, if an ODE Y admits a local
symmetry, one can use this symmetry to reduce the order of Y by one. Hence, when the
symmetry algebra of Y is sufficiently large (and solvable), this can be solved by quadratures.

Local (classical or higher) symmetries of a k-th order ODE Y in the unknown u are defined
by the solutions to a linear PDEs depending on the derivatives of u up to order k −1. Since the
general solution to this PDE cannot be found unless one knows the general solution to Y , one
usually can only search for particular solutions depending on derivatives of u up to order k−2.
Therefore, if Y does not have such a kind of symmetries it may not be solvable by quadratures.
Moreover, one may encounter equations which can be solved by quadrature but with a lack
of symmetries of order less or equal to k − 2. In fact, examples of this type are well known
in the recent literature [1, 6, 7, 10, 12, 13, 19, 20] but the first examples probably go back
to equations of the type classified by Painlevé [15, 24]. These examples seem to prove that
local symmetries are sometimes inadequate to handle equations which have not enough local
symmetries and they raise the question of whether an extension of the notion of symmetry
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would lead to a more effective method of reduction. Hence, various attempts in this direction
have been done and some new classes of symmetries have been introduced. Among these, in
the last few years, special attention has been devoted to a new class of symmetries introduced
by Muriel and Romero in [19] (see also [8, 9, 21, 25]). These symmetries are neither Lie point
nor Lie–Bäcklund and are called λ-symmetries, since they are vector fields which depend on
a function λ.

In the case of equations with a lack of point symmetries, Muriel and Romero have shown
that many of the order-reduction processes can be explained by the invariance of the equation
under λ-symmetries. In fact, if an equation is invariant under a λ-symmetry, one can obtain
a complete set of functionally independent invariants and reduce the order of the equation by
one as for Lie symmetries.

The aim of this paper is to show that this new class of symmetries can always be recovered
by a class of nonlocal symmetries of the given equation. In fact, we show that by embedding
a given ODE Y into a suitable system Y ′ determined by the function λ, any λ-symmetry of
Y corresponds to a local standard symmetry of Y ′ (see proposition 1). As a consequence, we
show that the reduction method of Muriel and Romero follows from the standard method of
reduction by differential invariants applied to Y ′.

An outline of the paper is as follows. In section 2, in order to fix notations and for
the convenience of the reader, we collect some notations and basic facts from the geometric
theory of differential equations. In section 3, after recalling the definition of λ-symmetries
(as given in [19]), we present our main result (proposition 1) on the nonlocal interpretation of
λ-symmetries. Finally, in section 4, we use the nonlocal interpretation of λ-symmetries
to reinterpret the Muriel–Romero reduction method as a nonlocal symmetry-reduction
method.

2. Preliminaries on local symmetries

In this section, we collect some notations and basic facts from the geometric theory of
differential equations. The reader is referred to [3, 5, 6, 22, 23, 27, 28] for further details.

Let M be a smooth manifold and π : E → M a smooth r-dimensional vector
bundle. We denote by πk : J k(π) → M the k-order jet bundle associated with π and by
jk(s) the k-order jet prolongation of a section s of π . Since, in this paper, we are only
concerned with the case dim M = 1, we assume that M and E have local coordinates t and
(t, u1, . . . , ur), respectively. Correspondingly, the induced natural coordinates on J k(π) will
be

(
t, ua

i

)
, 1 � a � r, i = 0, 1, . . . , k, where ua

i ’s are defined by ua
i (j∞(s)) = di (ua(s))/dt i ,

for any section s of π . Moreover, when no confusion arises, Einstein summation convention
over repeated indices will be used.

The k-order jet space J k(π) is a manifold equipped with the smooth distribution Ck of
tangent planes to graphs of k-order jet prolongations jk(s). This is the contact (or Cartan)
distribution of J k(π), whose infinitesimal symmetries will be referred to as Lie symmetries on
J k(π). A special kind of Lie symmetries on J k(π) is represented by the Lie point symmetries
which are obtained as prolongation of vector fields X on E. A fundamental theorem due to
Bäcklund [4, 14] shows that only when r = 1 there are examples of Lie symmetries on J k(π)

which are not the prolongation of point transformations. These Lie symmetries, which do
not come from point transformations, are called Lie contact symmetries and can always be
recovered as the prolongation of a Lie symmetry X on J 1(π). We denote by X(k) (or X(k−1))
the Lie point (or contact, respectively) symmetry obtained by prolonging the vector field X
to J k(π).
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In this framework, a k-th-order system of differential equations can be regarded as a
submanifold E ⊂ J k(π) and any solution of the system is a section of π whose k-order
prolongation is an integral manifold of the restriction Ck|E of the contact distribution to E . A
Lie symmetry which is tangent to E is, of course, also a symmetry of Ck|E and is called a
classical symmetry of E . The fundamental role of classical symmetries in this context is due
to the fact that, since they shuffle integral manifolds of Ck|E , they induce a transformation on
the space of solutions of E .

The natural projections πh,k : J h(π) → J k(π), for any h > k, allow one to define
the bundle of infinite jets J∞(π) → M as the inverse limit of the tower of projections
M ←− E ←− J 1(π) ←− J 2(π) ←− · · · .

The manifold J∞(π) is infinite-dimensional with induced coordinates
(
t, ua

i

)
, 1 �

a � r, i = 0, 1, . . . , and the R-algebra of smooth functions on J∞(π) is defined as
F(π) = ∪lC

∞(J l(π)). Hence, any f ∈ F(π) is a function of some arbitrary large but
finite number of jet coordinates. Analogously to the case of finite-dimensional manifolds,
tangent vectors and vector fields on J∞(π) are defined as derivations of F(π). The set
D(π) of vector fields on J∞(π) has the structure of a Lie algebra, with respect to the
commutator [ , ].

Since smooth sections of π can be infinitely prolonged, if we consider the tangent planes
to the graphs of ∞-order jet prolongations j∞(s), one can also define a contact distribution C
on J∞(π). In terms of coordinates, C is defined by the total derivative operator

D = ∂t + ua
i+1∂ua

i
,

which annihilates all the contact forms θa
s = dua

s − ua
s+1 dt .

If X is a Lie symmetry, by considering the sequence of prolongations X(1), X(2), . . .

one gets the vector field X(∞), which is a symmetry of C called the infinite prolongation of
X. However, contrary to the case of finite-order jet spaces, symmetries of C cannot always
be recovered by infinite prolongations of Lie symmetries. In fact, it can be proved that
Y = ξ∂t + ηa

i ∂ua
i

is an infinitesimal symmetry of C if and only if ξ, ηa
0 ∈ F(π) are arbitrary

functions and

ηa
i = D

(
ηa

i−1

) − D(ξ)ua
i . (1)

Hence, Y is the infinite prolongation of a Lie point (or contact) symmetry iff ξ, ηa
0 are functions

on E (or J 1(π), respectively).
Given a differential equation E ⊂ J k(π), the l-th prolongation of E is the set of points

E (l) := {jk+l(s)(x)} ⊂ J k+l (π) such that the Taylor expansion up to order k + l, at the point
x ∈ M , of the section s satisfies the equation E . Analogously, by considering the infinite
prolongations of sections of π , one can define the infinite prolongation E∞.

In this paper, we will deal only with (systems of) ordinary differential equations E which
are in normal form1 and not underdetermined. Hence, if E is defined by some smooth (vector)
function F = 0, E∞ is finite-dimensional and defined by the infinite system of equations

Ds(F ) = 0, s = 0, 1, . . . .

In this case, symmetries Y of C which are tangent to E∞ are called higher symmetries of E and
are determined by the condition Y (F )|E∞ = 0, i.e. that Y (F ) vanishes when restricted to E∞.
In particular, any higher symmetry of E is an infinitesimal symmetry of the restriction C|E∞ of
the contact distribution to E∞.

Analogously to the case of classical symmetries, the key role played by symmetries of
E∞ is due to the fact that they shuffle integral manifolds of C|E∞ and hence they induce a

1 That is, E is solved with respect to the higher derivatives.
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transformation in the space of infinite prolongations of solutions to E . Hence, instead of
computing symmetries Y of C which are tangent to E∞, one should be mainly interested in
computing their restrictions Y |E∞ to E∞. This choice also turns out to be convenient, since
it noteworthy simplifies computations (see [27, 28] for more details about these and other
aspects of ∞-jets theory).

3. Nonlocal interpretation of λ-symmetries

This section is devoted to the proof of the main result of the paper, which is the reinterpretation
of λ-symmetries of an ODE Y (as introduced in [19]) as shadows of nonlocal symmetries
of Y .

3.1. Nonlocal symmetries

A first heuristic generalization of local symmetries appeared in [16, 17] in the form of a
nonlocal point of view. A conceptual framework for nonlocal symmetries is provided by the
notion of covering. Since, here, we only deal with ordinary differential equations, we give
the definition of covering only in this case. The interested reader is referred to [18, 27] for the
general definition and further details.

Definition 1. Let Y be a k-order ODE on a one-dimensional bundle π0. We shall say that
a smooth bundle κ : Ỹ → Y∞ is a covering for the ordinary differential equation Y if the
manifold Ỹ is equipped with a one-dimensional distribution

C̃ = {C̃p}p∈Ỹ
and, for any point p ∈ Ỹ , the tangent mapping κ∗ gives an isomorphism between C̃ and the
restriction C|Y∞ of the contact distribution of J∞(π0) to Y∞.

The dimension of the bundle κ is called the dimension of the covering and is denoted by
dim(κ). Below we are mainly concerned with finite-dimensional coverings and, in particular,
with the case dim(κ) = 1.

Given a covering κ , integral manifolds of C̃ play a special role in the geometry of Y . In
fact, any integral manifold �̃ of C̃ projects, through κ , to an integral manifold of C|Y∞ , i.e. to
a (possibly degenerating) solution of the equation Y . However, this correspondence between
solutions of Y and integral manifolds of C̃ is not one-to-one, since, if � is an integral manifold
of C|Y∞ , then κ−1(�) is a family of integral manifolds of C̃. In particular, one can interpret
κ−1(�) as a parameterized family of solutions to Y . It follows that, in this picture, symmetries
of C̃ also play a key role. In fact, since these symmetries shuffle integral manifolds of C̃, they
induce a transformation on Y which maps solutions to solutions. In view of this fact, we give
the following:

Definition 2. Nonlocal symmetries of Y are the symmetries of the distribution C̃ of a covering
κ : Ỹ → Y∞

.

Let π0 be the trivial one-dimensional bundle over R, with standard coordinates (t, v), and
Y be given as

vk = f (t, v, v1, . . . , vk−1), (2)

for some smooth function f . Below we will consider only coverings, where κ is a trivial
bundle κ : Y∞ × W → Y∞, with W ⊂ R (dim(κ) = 1). In this case, if w is the standard
coordinate in W , the distribution C̃ is generated by the vector field on Ỹ defined as

D̃|Ỹ = D̄0 + H∂w, (3)
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where H is a smooth function on Y∞ × W and D̄0 = ∂t + v1∂v + · · · + f ∂vk−1 is the restriction
to Y∞ of the total derivative operator on J∞(π0), i.e.

D0 = ∂t + vi+1∂vi
.

Hence, the covering κ is determined by the systemY ′ defined by (2) together with the additional
equation

dw

dt
= H.

In fact, if one considers the trivial bundle π̃ : R
3 → R with coordinates (t, u1 = v, u2 = w),

then Y ′ ⊂ J k(π̃), Ỹ = (Y ′)∞ and κ is the obvious projection (Y ′)∞ → Y∞. Moreover, the
vector field (3) is just the restriction to (Y ′)∞ of the total derivative operator on J∞(π̃), i.e.

D̃ = D0 + wi+1∂wi
.

Nonlocal symmetries ofY are symmetries of the vector field (3) and can be determined through
a symmetry analysis of the system Y ′. Therefore, nonlocal symmetries of Y are infinitesimal
symmetries of the contact distribution on J∞(π̃) which are tangent to (Y ′)∞ and, in view of
(1) (where D now stands for D̃), have the form

Y = ξ∂t + η1
i ∂vi

+ η2
i ∂wi

(4)

with

η1
i = D̃

(
η1

i−1

) − D̃(ξ)vi, η2
i = D̃

(
η2

i−1

) − D̃(ξ)wi. (5)

In the rest of the paper, we will only consider nonlocal symmetries of Y with

ξ = ξ(t, v, w), η1
0 = η1

0(t, v, w), η2
0 = η2

0(t, v, v1, . . . , vk−1, w). (6)

Since these symmetries are possibly nonclassical symmetries of Y ′, they are completely
determined by a symmetry analysis of (Y ′)∞ on J∞(π̃) and will be called semi-classical
nonlocal symmetries of Y .

3.2. λ-symmetries

In this subsection, we recall the definition of λ-prolongation and λ-symmetries for an ODE Y
as given by Muriel and Romero in [19]. Here, by π0 we still denote the trivial one-dimensional
bundle over R with standard coordinates (t, v) and by Y a k-order ODE of the form (2) on π0.

Definition 3 (Muriel–Romero). Let λ be a smooth function on J 1(π0), then the λ-prolongation
to J k(π0) of a vector field X = ρ∂t + ψ∂v on J 0(π0) is the vector field

X[λ,k] = ρ∂t +
k∑

i=0

ψ [λ,i]∂vi

with

ψ [λ,0] = ψ, ψ [λ,i] = D0(ψ
[λ,i−1]) − D0(ρ)vi + λ(ψ [λ,i−1] − ρvi)

and D0 = ∂t + v1∂v + · · · + vk∂vk−1 the (truncated) total derivative operator on J k(π0).

Remark 1. By a straightforward computation [19], it can be shown that a vector field U on
J k(π0) is a vector field of the form X[λ,k] if and only if there exist two functions µ, λ on
J 1(π0) such that

[U,D0] = µD0 + λU. (7)

Definition 4 (Muriel–Romero). We say that a vector field X[λ,k], for some function λ, is a
λ-symmetry of Y if and only if X[λ,k] is tangent to Y .
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3.3. Nonlocal interpretation of λ-symmetries

In this subsection, we will provide a characterization of λ-symmetries of Y in terms of semi-
classical nonlocal symmetries, i.e. nonlocal symmetries of the form (4)–(6). In fact, using the
same notations of subsection 3.1, by considering the covering κλ : (Y ′)∞ → Y∞ defined by
the ODE system

Y ′ := {vk = f,w1 = λ}, (8)

one gets the following:

Proposition 1. An ODE Y admits a λ-symmetry X[λ,k] if and only if Y admits a semi-classical
nonlocal symmetry Y which is a symmetry of (8) such that [∂w, Y ] = Y .

Proof. Let X[λ,k] be a λ-symmetry of Y which is the λ-prolongation to J k(π0) of a
vector field X = ρ∂t + ψ∂v on J 0(π0). We show that one can determine a function
χ = χ(t, v, v1, . . . , vk−1) such that the vector field

Y = ewρ∂t + η1
i ∂vi

+ η2
i ∂wi

, (9)

with η1
0 = ewψ, η2

0 = ewχ and

η1
i = D̃

(
η1

i−1

) − D̃(ewρ)vi, η2
i = D̃

(
η2

i−1

) − D̃(ewρ)wi, (10)

is a semi-classical nonlocal symmetry of Y satisfying [∂w, Y ] = Y . In fact, one can readily
show that (9) has the form (4)–(6) and satisfies condition [∂w, Y ] = Y . Hence, we only need
to show that, for a suitable choice of χ, Y is also tangent to (Y ′)∞. To this end, we note that
the restriction of the function Y (vk − f ) to (Y ′)∞ agrees with the restriction of X[λ,k](vk − f )

to Y . Therefore, since, X[λ,k] is tangent to Y , one gets that Y (vk − f )|(Y ′)∞ = 0 and Y is
tangent to (Y ′)∞ iff Y (w1 − λ)|(Y ′)∞ = (

η2
1 − ewX[λ,1](λ)

)∣∣
(Y ′)∞ = 0. Hence, Y is tangent to

(Y ′)∞ iff χ is a solution of the following linear first-order equation on (Y ′)∞:

∂tχ +
k−1∑
i=1

vi∂vi−1χ +f ∂vk−1χ = X[λ,1](λ)+λ2ρ +λ(∂tρ +v1∂vρ −χ). (11)

Since for any non-characteristic Cauchy data (11) admits a unique solution (see [2] or [26]),
one eventually gets that any λ-symmetry of Y determines a semi-classical nonlocal symmetry
Y of Y such that [∂w, Y ] = Y .

Conversely, let Y be a semi-classical nonlocal symmetry Y ofY with respect to the covering
κλ. Since any such symmetry has the form (4)–(6), condition [∂w, Y ] = Y is satisfied if and
only if the functions ξ, η1

i and η2
i have the form

ξ = ewρ, η1
i = ewψi, η2

i = ewχi (12)

with ρ,ψi being functions of (t, v) and χi a function of (t, v, v1, . . . , vk−1).
Then, plugging (12) into (5) and using the definition D̃ = D0 +

∑
i wi+1∂wi

(here D0 is
the total derivative operator on J∞(π0)), one gets

ψi = D0(ψi−1) − D0(ρ)vi + w1(ψi−1 − ρvi),

χi = D0(χi−1) − D0(ρ)wi + w1(χi−1 − ρwi).
(13)

Now, if one puts X = ρ∂t + ψ0∂v , (13) entails that the restriction of X[λ,k](vk −f ) to Y agrees
with the restriction of e−wY (vk −f ) to (Y ′)∞. Therefore, by tangency of Y to (Y ′)∞, it follows
that X[λ,k] is tangent to Y . This concludes the proof, since it proves that any semi-classical
nonlocal symmetry Y of Y , satisfying condition [∂w, Y ] = Y , returns a λ-symmetry X[λ,k]

of Y . �
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Remark 2. This proposition proves that, by using formulae (9)–(11), it is always possible
to reconstruct a nonlocal symmetry Y from any given λ-symmetry X[λ,k]. In this sense, λ-
symmetries can be geometrically regarded as shadows of nonlocal symmetries. However, we
note that the problem of determining the general solution of (11) (the reconstruction problem
for X[λ,k]) should be at least as difficult as solving the given ODE Y . Therefore, in practice it
could not be so easy to determine such a correspondence (see example 3). Nevertheless,
almost all the examples of λ-symmetries available in the literature can be recovered as
nonlocal symmetries with χ a solution of (11) depending only on (t, v). These examples
of λ-symmetries are, in fact, shadows of nonlocal symmetries which are classical symmetries
of Y ′.

In order to show how in practice λ-symmetries can be recovered as nonlocal symmetries,
we consider the following examples.

Example 1. Let Y be defined as

v2 = v2
1

v
+ pg(t)vpv1 + g′(t)vp+1, (14)

where p 	= 0 is a constant. In [11], it has been shown that (14) is integrable by quadratures
but has Lie point symmetries only for very restricted forms of the function g(t). In
contrast, this class of equations admits the λ-symmetry X[λ,2] = ∂v +

∑2
i=1 ψ [λ,i]∂vi

, with
λ = (pg(t)vp+1 + v1)/v, for any form of g(t) (see [19]). Here, we show that the allowed
λ-symmetries can be recovered as nonlocal symmetries of (14). To this end, it will suffice
to determine a particular solution χ = χ(t, v), if any, of equation (11). Now, in the case of
equation (14), under above assumption on the form of χ , equation (11) read

(∂vχ + χv−1)v1 = −∂tχ + v−2(p(p + 1)g(t)vp+1 − χpg(t)vp+2).

Therefore, χ is a solution of the following system:{
∂vχ + χv−1 = 0,

∂tχ = (p(p + 1)g(t)vp−1 − χpg(t)vp)

and a straightforward computation gives

χ = (p + 1)v−1.

Then, λ-symmetries of (14) can be recovered by nonlocal symmetries which are the
prolongation to J 2(π̃) of the vector field ew(∂v + (p + 1)/v∂w).

Example 2. Let Y be defined as

v5 + e2(1/v+t)
(
v4 + v5 − 3v2

1 + vv2
) = 0. (15)

As shown in [20], (15) has no Lie point symmetries. Nevertheless, for λ = −v, (15) has the
λ-symmetry X[λ,2] which is the prolongation of the vector field ∂t + v2∂v . As before, we show
how to recover this λ-symmetry by a nonlocal symmetry of (15). To this end, we determine a
particular solution χ = χ(t, v) of equation (11) which, in this case, reads

∂tχ − vχ = −v1∂vχ.

Therefore, it is easy to check that in this case χ = 0 and the nonlocal symmetry is the
prolongation to J 2(π̃) of the vector field ew(∂t + v2∂v).

Example 3. Let Y be defined as

v2 = v2
1

v
+

(
v +

t

v

)
v1 − 1. (16)
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This is an instance of a Painlevè-type equation (see [15]) which does not have Lie point
symmetries. Nevertheless, one can readily check that the λ-prolonged vector field X[λ,2], for
λ = v + t/v and X = v∂v , is a λ-symmetry of this equation. In this case, equation (11) reads

∂tχ + v1∂vχ +

[
v2

1

v
+

(
v +

t

v

)
v1 − 1

]
∂v1χ +

(
v +

t

v

)
χ − v +

t

v
= 0 (17)

and it is easy to check that it does not admit solutions of the form χ = χ(t, v). Therefore,
the reconstruction of a nonlocal symmetry Y (of the form (9)–(11)) corresponding to X[λ,2] is
conditioned to the determination of a solution of (17) in the general form χ = χ(t, v, v1).

4. Reduction via λ-symmetries

One of the most important classical applications of symmetry analysis to ODEs is the reduction
of order. In particular, one can show that (Lie–Bianchi theorem) [22, 27] if a k-order ODE Y
possesses a solvable k-dimensional Lie algebra of Lie point symmetries, then Y is integrable
by quadratures. More in general, given a symmetry (Lie point, contact or higher) of an
ODE Y , one can use its differential invariants to reduce the order of Y [5, 6, 22, 23]. This
procedure, usually referred to as the method of differential invariants (MDI), can be described
as follows. If Y ⊂ J k(π0) is an ODE of the form (2), for any symmetry X of Y , the
restriction X to Y (or to Y∞, if X is a higher symmetry) has at most k functionally independent
differential invariants, say τ, φ0, φ1, . . . , φk−2. It follows that, since the restrictions of X and
D0 (to Y or Y∞) are such that [ X,D0] = αD0 (for some function α), the restrictions of
the functions gi = D0(φi)/D0(τ ), i = 0, 1, . . . , k − 2, also are differential invariants and
must depend on τ, φ0, . . . , φk−2. Therefore, in terms of these invariants, Y can be written
as the system of first-order k − 1 equations {dφi/dτ = gi}. In particular, if X is a Lie point
symmetry, one can choose the invariants τ, φ0, . . . , φk−2 in such a way that τ, φ0 are zeroth-
and first-order invariants, respectively, and φi = D0(φi−1)/D0(τ ). In fact, since each φi

depends on vi+1, the system of invariants so defined is independent and complete. Hence,
φk−1 = dφk−2/dτ is a function of (τ, φ0, . . . , φk−2) and Y takes the form of the (k − 1)-order
equation φk−1 = φk−1(τ, φ0, . . . , φk−2).

However, finding symmetries for ODEs is not always easy and often one encounters
equations with a lack of local symmetries. For example, it is well known that for a k-order
ODE Y the general solution to the determining equation for its (k − 1)-order symmetries (i.e.
symmetries on a (k−1)-order jet space) cannot be found unless one knows the general solution
to Y . Moreover, there are a number of examples [5, 6, 10, 12, 13, 19, 20, 23] of equations with
no symmetries of order less or equal to k − 2 (in particular with no Lie point symmetries).
Therefore, in these cases the MDI cannot be implemented and one needs alternative methods.
The method proposed by Muriel and Romero is of this sort since it allows the reduction of
ODEs not possessing Lie point symmetries.

The following proposition summarizes the method of Muriel and Romero (see [19] for
details).

Proposition 2. Let X[λ,k] be a λ-symmetry of the equation Y = {�(t, v, . . . , vk) = 0},
with λ = λ(t, v, v1), and let x = x(t, v), ζ0 = ζ0(t, v, v1) be two functionally independent
invariants of X[λ,k]. The general solution of � = 0 can be obtained by solving first a reduced
equation of the form �red.(x, ζ0, . . . , ζk−1) = 0, with ζi = diζ0/dxi , and then the auxiliary
first-order ODE ζ0 = ζ0(t, v, v1).

The reduced equation �red.(x, ζ0, . . . , ζk−1) = 0 is constructed as follows. Since ζi =
D0(ζi−1)/D0(x), each ζi depends on vi+1 and (in view of (7)) {x, ζ0, . . . , ζk−1} is a complete set
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of functionally independent differential invariants of X[λ,k]. Therefore, the reduced equation
�red. = 0 is determined by rewriting � = 0 in terms of these invariants.

However, since we have proved that any λ-symmetry of Y = {� = 0} can be recovered as
a local symmetry ofY ′ = {� = 0, w1 = λ}, one can expect that proposition 2 above represents
an application of MDI to Y ′. It is indeed the case as the following argument shows.

Under assumptions of proposition 2, the λ-symmetry X[λ,k] can be recovered by a nonlocal
symmetry Y whose restriction Y to (Y ′)∞ possess the invariants x = x(t, v), ζ0 = ζ0(t, v, v1).
Then Y also admits the derived invariants ζi = D0(ζi−1)/D0(x), i = 1, . . . , k − 1.
Moreover, since any ζi depends on vi+1, the differential invariants x, ζ0, . . . , ζk−2 are all
functionally independent, whereas ζk−1 = ζk−1 (x, ζ0, . . . , ζk−2). Therefore, in terms of
{x, ζ0, . . . , ζk−1} ,�(t, v, . . . , vk) = 0 can be rewritten in the form �red.(x, ζ0, . . . , ζk−1) = 0.
Now, since in Y ′ the second equation is integrable by the quadrature w = ∫

λ dt , the general
solution of Y ′ can be obtained by solving first �red.(x, ζ0, . . . , ζk−1) = 0 and then the auxiliary
first-order ODE ζ0 = ζ0(t, v, v1).

This proves the following:

Proposition 3. The reduction of Y = {� = 0} via the λ-symmetry X[λ,k] is conditioned to
that of Y ′ = {� = 0, w1 = λ} via the nonlocal symmetry Y and vice versa.

Remark 3. Note that, since the reduction can be achieved just by means of the invariants of
X[λ,k], above discussion shows that the application of MDI to Y = {� = 0} is independent of
the explicit determination of a solution to the reconstruction problem (see remark 2) for X[λ,k].

A number of completely worked-out examples of the reduction of ODEs by means of the
method of proposition 2 are given in [19, 20]. Therefore, the reader is referred to these papers
for a detailed list of examples. However, we conclude this section with a couple of examples
which provide an application of the above nonlocal symmetry reduction method.

Example 4. Let Y be defined as

v2 = − t2

4v3
− v − 1

2v
. (18)

As shown in [19], equation (18) does not have Lie point symmetries but, for λ = t/v2 and
X = v∂v , admits the λ-symmetry X[λ,2]. This λ-symmetry can be recovered by a symmetry Y
of the system Y ′, defined by (18) and w1 = t/v2. In fact, by using (9) and (10) and considering
the solution χ = 2ew of (11), one finds that Y is the prolongation to J 2(π̃) of the vector field
ew(v∂v − 2∂w). Now, the invariants x and ζ0 read

x = t, ζ0 = −v1

v
− t

2v2

and, in terms of the system {x, ζ0, ζ1 = dζ0/dx}, (18) reads

ζ1 = ζ 2
0 + 1. (19)

Therefore, since the general solution of (19) is

ζ0 = tan(x + c1), c1 ∈ R,

one can find the general solution of (18) by solving the last equation
vt

v
+

t

2v2
= −tan(x + c1).

Since this equation can be linearized by the transformation v 
−→ v2, the general solution to
(18) is

v = ±cos(t + c1)
√

−ln(cos(t + c1)) − t tan(t + c1) + c2, c1, c2 ∈ R.
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Example 5. Let Y be the ODE (16) of example 3. As observed above, Y admits a λ-symmetry
which can be recovered by the following (higher) symmetry of Y ′ (the system defined by (16)
and w1 = v + t/v):

Y =
∑

s

[
D̃s(ewv)∂vs

+ D̃s(ewχ)∂ws

]
,

where χ = χ(t, v, v1) is a solution of (17). Now, the invariants x and ζ0 are just the invariants
of Y (the restriction of Y to (Y ′)∞) which depend only on t, v, v1. Therefore, since Y simply
reads

Y = ew
[
v∂v + χ∂w + (v1 + v2 + t)∂v1

]
,

one can readily check that these invariants are

x = t, ζ0 = v1 + t

v
− v

and, in terms of the system {x, ζ0, ζ1 = dζ0/dx}, (16) becomes ζ1 = 0.
It follows that ζ0 = c, c ∈ R, and then the solutions of (16) are described by the

generalized Riccati equation (see [15])

v1 = v2 + cv − t.

5. Summary and concluding remarks

The relevance of λ-symmetries, introduced first in [19], is due to the fact that a number of
equations not possessing Lie point symmetries can be reduced by a method which makes use
of λ-symmetries. Unfortunately, despite their name, λ-symmetries of an ODE Y = {vk = f }
are not at all symmetries (unless λ = 0) and the λ-symmetry reduction method may appear to
be somehow unrelated to standard symmetry reduction methods.

We have shown it is not the case: according to the main result of this paper (see
proposition 1), λ-symmetries of Y correspond to a special kind of nonlocal symmetries of Y .

In fact, following the approach to nonlocal symmetries based on the notion of coverings
[27, 28], λ-symmetries can be obtained by first embedding Y into the system Y ′ = {vk =
f,w1 = λ} and then computing local symmetries Y of Y ′ which have the form (4)–(6) and are
such that [∂w, Y ] = Y .

As a consequence, one can show that (see section 4) the λ-symmetry reduction method
of Muriel and Romero readily follows from the standard method of reduction by differential
invariants applied to the system Y ′.

Finally, some remarks are in order. Since their first appearance, λ-symmetries have
stimulated new research on the reduction problem for differential equations [8, 9, 21, 25].
In particular, a generalization of λ-symmetries has been proposed in [25] through the
so-called telescopic vector fields. However, as in the case of λ-symmetries, also this
generalization can be recovered by a nonlocal theory of symmetries. In fact, any telescopic
vector field can be recovered as a nonlocal symmetry of the form (4)–(6) such that
ξ = ξ(t, v, v1, w), η1

0 = η1
0(t, v, v1, w) and [∂w, Y ] = Y .
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